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Abstract. Manual segmentations of anatomical regions in the brain are
time consuming and costly to acquire. In a clinical trial setting, this is
prohibitive and automated methods are needed for routine application.
We propose a deep-learning architecture that automatically delineates
sub-cortical regions in the brain (example biomarkers for monitoring the
development of Huntington’s disease). Neural networks, despite typically
reaching state-of-the-art performance, are sensitive to differing scanner
protocols and pre-processing methods. To address this challenge, one can
pre-train a model on an existing data set and then fine-tune this model
using a small amount of labelled data from the target domain. This work
investigates the impact of the pre-training task and the amount of data
required via a systematic study. We show that use of just a few samples
from the same task (but a different domain) can achieve state-of-the-art
performance. Further, this pre-training task utilises automated labels,
meaning the pipeline requires very few manually segmented data points.
On the other hand, using a different task for pre-training is shown to be
less successful. We then conclude, by showing that, whilst fine-tuning is
very powerful for a specific data distribution, models developed in this
fashion are considerably more fragile when used on completely unseen
data.
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1 Introduction

In clinical trials for neurodegenerative diseases, the progress of the disease (and
efficacy of preventative treatment) is often monitored by calculating the volume
of regions of interest (ROIs) in the brain [12]. For example, changes in volume of
the caudates are known biomarkers for Huntington’s disease (HD) [9]. The gold-
standard procedure is for an expert clinician to manually delineate the region(s)
of interest (ROI) and calculate the enclosing volume. However, often due to
the number of patients and the amount of required follow-up scans, manual
delineation is simply too costly and time consuming. Further, with multiple
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clinicians and longitudinal data, inter- and intra-rater variability can become an
issue.

A wealth of automated approaches [3] have been proposed that attempt
to alleviate this issue. Notably, atlas-based algorithms [17,26], that segment
anatomical regions by registering target scans to some ground-truth atlases, are
widely used and perform well for many biomarkers. That said, one faces many
challenges when employing such automated methodologies for clinical trials [11].
For example, some pipelines require labour-intensive manual steps (e.g. bound-
ary shift integral analysis [8]).

More recently, deep-learning algorithms are being turned to the problem [18].
These are computationally much more efficient and reach state-of-the-art per-
formance for many ROIs [21]. However, they are known to be sensitive to dif-
fering input data distributions [25,27], which vary due to scanner protocol, pre-
processing techniques and image quality. This means that results can deteriorate
on unseen data. Models can also deteriorate between cohorts that vary in pathol-
ogy [5], however this is not addressed in this study.

Transfer learning, an attempt to bridge this gap, is an active area of research
and currently the most popular knowledge transfer technique for MRI deep learn-
ing [6]. Transfer learning takes information from one task and, using a small
amount of labelled data, makes the model generalise to a new problem. The new
problem can differ by definition (i.e. the structure to be segmented), be on a new
data set (differing by scanner protocol, pre-processing and subject population),
or both.

Transfer learning is a promising deployment strategy on new clinical tri-
als, for which little or no labelled data exists. This work is an investigation
into such an application, in particular the choice of pre-task and the amount
of labelled clinical data required to transfer information. We only know of two
systematic studies for brain MRI segmentation which investigates the amount
of data required and both are for 2D lesion segmentation [2,10]. Other medical
imaging studies take models pre-trained on non-medical data [22,24], which is
effective but inherently limited to 2D inputs. This study is for 3D anatomical
delineation, where we vary the pre-task ROI and the pre-processing techniques
employed. Altering the pre-processing addresses a common discussion between
practitioners of medical imaging and AI. The medical imaging community tend
to remove variance between images by registering to a common template [16].
This provides a strong spatial prior to the model. However, in the deep-learning
community, there is a tendency to increase variability in the training process,
via data augmentation, in order to generalise better to unseen data [4]. This has
the advantage of not requiring registration at inference time. Further, matching
pre-processing techniques between data is not always possible in a clinical set-
ting. This often happens when building models from legacy data sets, for which
the raw data may not be available. Therefore, it is informative to investigate
this influence.

We take the real-world case study [14] of caudate segmentation for an HD
population, as the target problem, and assess a range of pre-tasks to transfer
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knowledge from, in order to boost final segmentation accuracy. We use three
separate tasks: automatically generated labels from an Alzheimer’s disease (AD)
population [13], manually-segmented lateral ventricles and manually-segmented
tissue masks. The latter two use the same HD subjects as the target caudate
problem. Further, despite the promise of transfer learning for such tasks, little
systematic work has been carried out investigating the amount of data required
for fully 3D anatomical segmentation from MRI images.

We contribute a methodical study into the points raised above. In particular:

1. How much data is enough (end-to-end and fine-tuning) for 3D dimensional
anatomical segmentation.

2. How the choice of pre-training, which varies in terms of pre-processing, aug-

mentation and task affects results.

That models fine-tuned on little data are fragile when applied to new sets.

4. That utilising automated labels yields close to state-of-the-art performance
with just a few manual labels.

@

2 Data Sets and Learning Tasks

For an overview of all the data used in this work, consult Table 1. These data
sources have been labelled HDT-C, MAL-C, HDT-V, HDT-WB and OAS-C.
This labelling reflects the source of the data and the ROI delineated. Therefore
there are 3 unique data sources (HDT, MAL and OAS) and 3 different structures
(C: caudate, V: lateral ventricles and WB: whole brain). We show the range of
data sets in Fig. 1.

The overall goal of each network is to accurately predict caudate labels from
the HDT data. Therefore, success is measured by calculating segmentation per-
formance for predictions on HDT-C. OAS-C is used as a validation data set, to
assess how the models generalise to unseen distributions—which raises several
interesting discussion points. The remainder of the data sets are used to pre-
train networks, in order to simulate a scenario where only a handful of labelled
data points are available in the target domain. Consult Fig. 2 for a schematic on
how all models are trained in this paper. Neural networks are named after their
initial pre-task data set.

2.1 Target Task (HDT-C)

The target problem is the segmentation of the caudate from a multi-centre HD
clinical trial data set. As part of the clinical trial process, the caudates were man-
ually delineated on each subject’s screening 3D T1-weighted image in MNI305
space. The data consists of 306 training subjects and 76 test subjects. This data
set will be referred to as HDT-C.
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Manually delineated whole
brain labels in native space HDT-C.V
Manually delineated
caudate & ventricles
in MNI space

ADNI (MAL-C) HDT OASIS (OAS-C)
Caudate labels generated Manually delineated
by MALPEM caudate labels

Input Feature Space

Fig. 1. The five data sets used in this study. HDT-C and HDT-V are delineated on the
same T1 scans. We have schematically included a depiction of the input space, with
circles grouping data sources.

Table 1. Summary of all data and pre-processing applied. *Same data, with same
pre-processing and train/test split. **Same subjects (and split) with differing pre-
processing.

HDT-C* MAL-C HDT-V* HDT-WB** |OAS-C
Segmented Caudate Caudate Ventricles Whole brain | Caudate
ROI
Source HD trial ADNI HD trial HD trial OASIS
(MALPEM
labels)
Space MNI305 Native MNI305 Native MNI305
Resampled 172 x 220 x 156|192 x 172 x 220 x 156|256 x 256 x |172 x 220 x 156
dimensions 192 x 160 192
Voxel spacing |1 X 1Xx 1 Various I1x1x1 I1x1x12 |[1x1x1
Patch size 72 X 112 x 112 |80 X 112 x |96 X 136 x 112 |64 X 64 X 64 |72 x 112 x 112
112
Skull strip No No No No Yes
Augmentation |Flip L/R Flip L/R |Flip L/R Random -
patch,
random 90
degree
rotations
and flips
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Model Pre-training Target task Validation task
name (HDT-C) (OAS-C)

! —
-
HDT-V-FT ————
Train Freeze &
end-to-end fine-tune on 7
HDT-V brains in target task
| -
MAL-C
1
o
1
HDT-C-E2E No pre-training >
Train end-to-

end on » brains e
from target task

Fig. 2. Schematic of how each model is trained. The first three models are all pre-
trained on a different task and then fine-tuned on a subset of the target task data
set. The fourth model is not pre-trained and is trained end-to-end on a subset of the
target task data set. All models are then validated on a hold out set from the target
domain and finally a further validation set from an unseen data distribution. See Fig. 1,
for the relationship between these data sets. In the network schematics, green implies
that weights at that particular level are trainable, where as red implies those layers
are frozen (see Fig.3 for a detailed description of the network). Please refer to online
version for colours. (Color figure online)

2.2 Pre-training Tasks

Caudate (MAL-C). To learn a segmentation of the caudate on a different
data set represents an out-of-distribution same-task pre-training case.

We obtained data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database [13] (http://adni.loni.usc.edu). The ADNI was launched in
2003 as a public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. For up-to-date information, see www.adni-info.org.
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The caudate labels were automatically generated, using the MALPEM
multi-atlas approach [17] which are available at https://github.com/ledigchr/
MALPEM. We chose a random sample of 544 training subjects and 118 for
testing.

Lateral Ventricles (HDT-V). For the HDT data, we utilise manual labels of
the lateral ventricles (in MNI space). This is using the same input as the target
task. The training/test split is kept the same, to ensure there is no cross-over of
learned feature maps when fine-tuning. This data is denoted HDT-V.

Whole Brain (HDT-WB). Using the same HD subjects as HDT-C and HDT-
V, we use manual delineations of the whole-brain tissue from native space. Note,
the train/test split is kept the same.

2.3 Generalisation Task (OAS-C)

In order to test the generalisability of the models presented, we use a validation
data set. The data consists of manual labels created by Neuromorphometrics,
Inc (www.neuromorphometrics.com) for 39 images from the OASIS (www.oasis-
brains.org) project.

3 Methodology

3.1 Neural Network

Architecture. We use the same network architecture for all tasks presented
in this paper, a 3D UNET [7]—which is a generalisation of the now ubiquitous
2D UNET [20]. The 3D version consists of 3D convolutions, allowing for full
representation of volumes and the utilisation of information in all directions. The
trade-off comes with network size, as volumes require more memory. Figure 3 is
a schematic of the graph structure, with feature encoder on the left and decoder
on the right. The encoder consists of successive blocks of convolution, batch
normalisation and ReLU activation, followed by max pooling. For the decoder,
we use similar blocks, followed by a max-unpooling layer [28]. The final layer is
a1l x 1 x 1 convolution, with two channels for the classification. We do not use
any fully connected layers, to allow the network to be input size invariant (the
only constraint being each dimension must be divisible by 8). The total number
of trainable parameters 220,000.

To fine-tune this network, the encoder is frozen and only the decoder weights
are allowed to change—see Fig. 3.

Optimisation. All training is run using the ADAM optimiser [15] with an
initial learning rate of 0.001. The smoothing parameter (typically denoted ¢) is
set to 0.1, in order to avoid a vanishing denominator. The neural network was
implemented using Tensorflow 1.15 [1]. All training was done on an NVIDIA
RTX 2080 TT graphics card and the batch size was 2.
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Fig. 3. Neural network architecture used throughout.

Pre-processing. All cases considered in this paper are pre-processed in differ-
ent ways, to simulate differing input distributions. Table1 highlights the pre-
processing steps taken for each data set. The order of processing is: registra-
tion (if performed), bias field correction [23], resampling, z-score normalisation,
patch extraction and then augmentation. For OAS-C, skull stripping happens
before normalisation. The key differentiators are MNI /native space—with the
target task being in MNI—and the generalisation data, OAS-C, has been skull
stripped. Large portions of skull and CSF are present in the target patch; their
absence in OAS-C causes high activation in these regions. This provides unseen
conditions for all the neural networks considered thus far.

A network applied to the whole brain is too large to fit into GPU memory,
therefore we extract a generous bounding box around the centre of mass of the
training segmentations. This was sufficient to encompass all the ROIs in the
respective test sets. For the whole brain task, random (64 x 64 x 64) patches are
extracted every epoch.

4 Results and Discussion

4.1 Pre-training Task Results

For each task, a model has been trained end-to-end and then tested on a hold out
set. In Table 2, performance statistics for the network are presented. The mean
intersection over union (IOU), also called the Jaccard index, and its standard
deviation are shown. The network is able to learn the differing tasks well and
with low variance between subjects. Note, the whole brain task has a relatively
low IOU (when compared to state of the art), as each brain is evaluated without
any overlap of patches when predicting (which is often done to boost perfor-
mance [19]). The outlier is the model trained on the automated labels on the
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AD data set. This can be accounted for by considering assumed inaccuracies in
the automated ‘ground truth’ which MALPEM would make according to some
random variable. This introduced noise in the labels is not inferable at test time
by the network.

Table 2. Mean and standard deviation IOU on the pre-training tasks test sets.

Task Mean (= std.)

Ventricles (HDT-V) 0.983 (£0.0149)
Whole Brain (HDT-WB) | 0.940 (£0.0010)
Caudate (MAL-C) 0.837 (£0.0942)

4.2 Fine-Tuning on Caudate Task

For each set of pre-trained weights, the network is fine-tuned on a subset of
the target HD data set. This allows the model to learn some in-distribution
features and thus boost performance. As a comparison, an end-to-end model
is also trained (from scratch) on the same amount of data—so the reader may
infer the benefits of fine-tuning. Figure4 shows plots of the same slice from a
subject from the test set, highlighting the errors made by each network. The
left hand column is the ground truth and the amount of training data increases
as the row number does. Each network is labelled by its source data set and
whether it has been trained end-to-end (E2E) or has had additional fine-tuning
(FT) separately. For instance HDT-WB-FT is initially trained on the HDT-WB
data for whole brain segmentation and then fine-tuned on HDT-C for caudate
segmentation (see Fig.2). It is apparent that all methods qualitatively perform
worse as n decreases and that the MAL-C-FT methodology appears to make
comparatively fewer mistakes. In contrast, the HDT-WB-FT method with n = 2,
has completely missed the caudate and end-to-end training (HDT-C-E2E), which
had no pre-training, similarly makes large errors. When all available data is used
from the target domain, n = 306, all methods converge to a very similar solution.

Figure 5 plots test IOU as a function of data used from the HD set. Despite
having the worst performance during pre-training, the model trained initially on
MALPEM labels can reach almost state-of-the-art performance with minimal
fine-tuning. This should be emphasised; with just two manually labelled brains,
a neural network can be built that reliably segments the caudate. In contrast,
the end-to-end model is the worst approach until 16 scans are used, at which
point fine-tuning becomes redundant. For n > 16, all models perform similarly,
as they asymptote to a mean IOU of approximately 0.93.

In terms of task choice, it is clear that pre-training by learning the caudate is
preferential. With limited data, the model pre-trained using the ventricle delin-
eations gives reasonable results. This is because initial and target tasks are in
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Fig. 4. Axial contours of caudate predictions (compared to ground truth, GT), as a
function of n—the number of subjects in the training data. Red: true positive. Green:
false negative. Blue: false positive. All plots are the same slice of the same subject.
Please refer to online version for colours. (Color figure online)
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Fig. 5. Distribution of IOU scores by the amount of fine-tuning data used. Each box
plot is constructed by testing on the 76 test subjects. For comparison, a model is trained
from scratch using n subjects. Boxes are ordered in groups of MAL-C-F'T', HD'T-V-FT',
HDT-WB-FT and HDT-C-E2E—please see online version for colours. (Color figure
online)
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the same space. On the contrary, the whole-brain model, subject to a greater
level of augmentation, which should in theory be sensitive to a richer feature set
performs no better than the model without any pre-training.

These three pre-training tasks highlight that choosing the same task on out-
of-distribution data outweighs either a related task using the target data, or a
task that maximises the variance in previously acquired knowledge (through aug-
mentation and required labelling of the whole brain). This means that, surpris-
ingly, even though the ventricle task contains the strong spatial prior provided
by MNI registration and the ventricles are neighbouring structures, it is less
important than learning the same structure from a different disease population,
in non-registered native space.

4.3 Generalisation

The above conclusions are relevant to the problem of maximising performance on
a given data set, but the question remains regarding generalisation to new data
distributions. Using the OAS-C data (Sect. 2), we can ascertain the generalisabil-
ity of all models considered thus far. OAS-C has been previously brain masked,
which provides a significantly different input distribution. Not only because z-
normalisation acts on the whole domain, but large portions of skull and CSF
were present in the target patch. This provides unseen conditions for all the
neural networks considered thus far.

0.85

0.80
0.75
model
0.70 —— MAL-C-FT
= -== HDT-V-FT
S0.65 2T e HDT-WB-FT
060 N N4 oSS HDT-C-E2E

10 10?

Fig. 6. Mean IOU on the OAS-C data set, as a function of the number of fine-tuning
subjects (n) used. In the case of HDT-C-E2E, n is the amount of data used in totality.

In Fig. 6, the mean IOU is plotted for each method applied to OAS-C, as
a function of the number of subjects in the fine-tuning set. It becomes highly
apparent that the models fine-tuned on a few scans do not generalise well, despite
performing well on the target task (Fig.5). This implies that the connection
between the frozen part of the network and the fine-tuned layers is very fragile.
This is corroborated by the HDT-V-FT method performing reasonably well for
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small n, as the early layers are ‘seeing’ data more like their original training case
(HDT-V, which is in MNT space too).

Therefore, whilst task selection was most important for tuning to a specific
data set, for complete generalisation, the choice of pre-processing appears more
influential. The cases that have been initially trained in MNI space, like OAS-
C, perform better. This is especially contrasted against the MAL-C-FT, which
cannot generalise until n > 200—at which point the encoder is probably learn-
ing an independent representation without utilising pre-trained features in the
decoder. The other fine-tuned models begin to generalise as n increases, implying
exposure to more examples inherently improves the connection between the two
components of the network. It is worth emphasising that performance on the
HDT-C data (Fig.5) plateaus before performance on the OAS-C data (Fig. 6),
implying that the increase in HDT-C samples has a hidden benefit on future
predictions on unseen data.

5 Conclusions and Extensions

This work has shown that, when few in-distribution labelled scans are available,
it is possible to construct a neural network that gives state-of-the-art perfor-
mance. This is particularly encouraging for deploying neural networks in clinical
trials. In such a scenario, it appears sensible to first generate automated labels
on a different data set and then fine-tune using a few manually labelled scans
(say screening patients). Such a pipeline can be rapidly deployed across trials.

Fine-tuning a model trained on the same task was far more beneficial than
matching the input distribution of the data. That said, on the flip side, fine-
tuning appears to do little for generalisation to a new distribution. This is at
least the case for the problem considered here, whereby using a co-registered
pre-task data set, yielded the strongest generalisation performance. Given the
generalisation results, it appears that matching the input distribution, at all
stages in the pipeline, is advisable and it is not sufficient to fine-tune a network
which expects a differing distribution.

Several avenues should now be explored. An investigation into whether a fine-
tuned model initially trained in MNI space would yield improvements over one
from native space (e.g. MAL-C-FT) should be carried out. Secondly, a demon-
stration of this model generalising to new data would be promising. Finally,
whilst we have elucidated impacts of task selection and pre-processing meth-
ods, a full parameter sweep could be devised that fully separates task, disease
population and pre-processing technique.
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