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DEEP-LEARNING METHODS FOR ENRICHMENT OF 
ALZHEIMER’S DISEASE CLINICAL TRIALS USING 
MRI AND PET

OBJECTIVES
Drug development trials aimed at modifying Alzheimer’s disease (AD) increasingly
look at recruitment of participants at early stages, preferably before symptomatic
onset. This represents two challenges: firstly, participants may not significantly
decline during the clinical trial period, vanishing the statistical effect of the
evaluated treatment. This problem can be solved by recruiting a large number of
participants; however, this leads to the second challenge: high trial running costs.
This high cost limits the number of compounds that can be tested.

The process of recruiting participants that are likely to decline within a trial’s
observational period is commonly called trial enrichment. The standard approach
for trial enrichment is to use biological and neuropsychiatric markers as criteria to
include or exclude participants. Some of these criteria could be a mild cognitive
impairment (MCI) diagnosis, a cognitive score above certain threshold, or be
cognitive normal with a family history associated with the disease.

Here we present a neuroimage-driven deep-learning framework for trial
enrichment that is able to differentiate participants with accelerated cognitive
decline from those that remain cognitively stable within 24 months. Our aim is to
develop a tool that will allow a clinical research or pharma organisation to recruit
participants that are likely to decline within a trial’s observational period.

METHODS
Two Siamese deep convolutional neural networks (DCNNs) were trained using
whole-brain PET (AV45, FBB) and T1-weighted MRI images from the ADNI
longitudinal database. MCI and cognitively normal (CN) participants were
dichotomised into decliners and non-decliners based on if they were diagnosed
with AD or not in future follow-ups respectively; within ADNI, time to AD
conversion spanned from 6 months to 10 years. Cognitive decline was measured
with the CDR-SB score. A sample of 206 participants (50% decliners) were
randomly selected for training (70%) and evaluation (30%).

RESULTS
When identifying decliners PET embeddings showed an accuracy score in the
training and evaluation sets of 87% and 78%, respectively. Using MRI embeddings
these scores were 70% and 69%, and for PET+MRI combined the scores were 86%
and 84%. The standard composite SUVR threshold of >1.22 [Chen K, J Nucl Med.
2015] reached an accuracy of 79% (training) and 81% (evaluation).

CONCLUSIONS
SUVR levels were associated with future cognitive decline in MCI but not in CN, while
the DCNN embeddings were able to identify both groups. Deep-learning algorithms
offer a reliable framework to predict cognitive decline in MCI and control participants
using neuroimaging data only.

Future work will focus on combining clinical and neuroimaging data to further improve
our results with the objective of building a recruitment platform that assist clinical
trials.
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IMPACT ON CLINICAL TRIALS
The results from the Aducanumab and Lecanemab clinical trials indicate that these
new treatments are able to slow the rate of cognitive decline in AD. Particularly
Lecanemab showed a clear dosage effect of slowing cognitive decline. Both
compounds are the first approved disease modifying medication that have an impact
in patients cognition. However, clinical trials that aim to follow the success of
Lecanemab/Aducanumab still face the expensive costs that a large trial represents.

Set
Baseline 

diagnosis
Age Sex (F/M) CDR-SB MMSE Education APOE4

Decliner Train
MCI: N=48

CN: N=3
71 (7.49) 25/26 2 (1.14) 27.5 (1.96) 16 (2.7)

0: N=17
1: N=21
2: N=13

Eval
MCI: N=21

CN: N=1
71 (7.03) 6/16 1.77 (0.9) 27.4 (1.43) 16 (2.1)

0: N=6
1: N=12
2: N=4

Stable Train
MCI: N=24

CN: 32
71 (6.84) 26/30 0.52 (0.73) 28.5 (1.5) 15.9 (2.8)

0: N=37
1: N=18
2: N=1

Eval
MCI: N=7
CN: N=8

68 (4.18) 8/7 0.33 (0.44) 28.5 (1.3) 16.4 (3.3)
0: N=10
1: N=4
2: N=1

Figure 2. Activation maps from the
trained Siamese DCNNs. A: Activation
maps for the PET images. B: Activation
maps for the structural MRIs.

Figure 1. CDR-SB score differences between enriched and original baseline cohorts with a 20% rejection
threshold at baseline. Top row: Cohort enrichment for MCI diagnosed participants, here our DCNN
approach obtained a better cohort enrichment than the SUVR PET threshold. Bottom row: Cohort
enrichment for the control group, here both DCNNs (MRI and PET) behave consistently when predicting
decline in controls, however the SUVR approach failed to find the relationship.

Table I. Participant demographics of the randomly selected participants from the ADNI cohort.
Both training and evaluation (eval) demographics are shown.

Figure 3. Cohort enrichment platform for clinical trials.

The activation maps from the
trained DCNNs (Figure 2),
showed high gradients within
brain regions associated with
AD. For the PET images these
regions were the Temporal,
Parietal, Precuneal and Lower-
Frontal cortices. We also
found important contributions
of subcortical regions in PET.
For the MRI images, DCNN
activation regions comprised
the Temporal, Frontal cortices
as well as Thalamic
subcortices.

RESULTS continued
When predicting decline in MCI, the DCNN-PET showed similar performance to the
SUVR threshold, with an accuracy of 0.83 DCNN and 0.79 SUVR. However, when
predicting cognitive decline in controls, only the DCNN embeddings correctly
identified decliners using either PET or MRI. The SUVR threshold showed no
association with cognitive decline in healthy controls (Figure 1).

The high costs for trials is slowing the much-needed innovation to help AD patients.
This cost can be reduced by an improved recruitment strategy that identifies
participants that are more likely to benefit of an experimental treatment. Our future
research efforts will be focused on developing a recruitment platform for clinical trials.


	Slide 1

