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Introduction
• White matter (WM) lesions are a hallmark of multiple sclerosis (MS) and reflect the 

inflammatory activity.
• Automatic detection of WM hyperintensities (WMH) from magnetic resonance imaging 

(MRI) T2-fluid attenuated inversion recovery (FLAIR) scans can support MS diagnosis and 
help to monitor treatment effectiveness in clinical trials.

• Brain volumetric measures can be used to study the neurodegenerative component of 
MS, to predict disability progression, and to evaluate potential anti-inflammatory, 
remyelinating or neuroprotective therapies.1-3

• IXICO’s IXIQ.Ai is a framework for MRI segmentation workflows.4-6

Objectives/Aims
To validate convolutional neural 
networks (CNNs) for:

1. segmentation of WMH from 
3D FLAIR scans

2. segmentation of MS-relevant 
brain regions from 3D T1-
weighted (T1W) scans

3. volumetric analysis

Methods
• CNNs trained to segment WMH from 3D FLAIR scans and brain 

regions, incl. whole-brain (WB) and thalamus, from 3D T1W scans
• Jacobian integration used to estimate WB volume change
• Dataset for WMH workflow validation: a publicly available MS 

dataset7 with 3D FLAIR scans, manual segmentations by seven expert 
raters, and a rater majority voting consensus

• Datasets for brain region workflow validation: ADNI 
(https://adni.loni.usc.edu/), OASIS (https://www.oasis-brains.org/), 
Huntington’s disease (two, internal), multiple system atrophy 
(internal), healthy controls aged 75-86 and 19-25 (https://brain-
development.org/ixi-dataset/)

• WMH ground truth = majority voting consensus
• Brain region ground truth = semi-automated segmentations

(with manual edits)
• Accuracy/robustness from dice score coefficient (DSC), visual 

assessment, volume correlation/volume error, group separation
• Test-retest performance (ADNI BTB and OASIS datasets)

Conclusions
• The WMH workflow shows higher overlap and volume 

correlation with the ground truth than comparable automated 
methods.

• The brain region workflow produces high-quality and reliable 
whole-brain and thalamus regions for volumetric analysis.

• The IXIQ.Ai framework provides a scalable and robust 
automatic solution for volumetric analysis of brain WMH and 
regions of interest in MS.

Figure 2: Boxplots showing the distribution of DSCs: IXIQ.Ai WMH workflow (prediction), each individual expert rater (raters 1-77) and other WMH segmentation methods compared to the WMH ground truth (consensus).
(antspy, https://github.com/ANTsX/ANTs/wiki; BIANCA, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA/Userguide – lesion probability maps thresholded at 0.8/0.9/0.95; nic_MSlesion, https://github.com/sergivalverde/nicMSlesions)

Figure 1: IXIQ.Ai workflows for A) pre-processing for cross-sectional and longitudinal analyses, B) region 
segmentation, and C) Jacobian Integration for volume change analysis

Volume Change: WB

The WMH workflow’s ground-truth overlap (mean±SD DSC = 0.65±0.17) was comparable to the individual raters’ and higher than for other automated methods (antspy 0.51±0.19; bianca_0.9 
0.35±0.19; nic_MSlesion 0.52±0.23) (also see Figure 2). Its average volume correlation with the ground truth (r = 0.96) was higher than for the other methods (antspy r = 0.85; bianca_0.9 r = 0.69; 
nic_MSlesion r = 0.87) and its average volume error (AVE) relative to the ground truth (mean±SD AVE, mL = 3.1±3.3) was the lowest (antspy 6.5±9.1; bianca_0.9 8.3±11.0; nic_Mslesion 5.1 ±6.9).

The IXIQ.Ai segmentations (CNN) had 
high ground-truth overlaps (mean 
DSC>97). Visual QC found consistently 
high segmentation quality (see Figure 
4): 98% of the whole-brain and 100% 
of the thalamus segmentations passed 
QC.

The IXIQ.Ai volume change method 
(CNN + Jacobian), applied to the WB, 
detected significant group differences 
in changes over 12 months, with 
similar or higher CLES and similar or 
lower SD of group differences (%) than 
other methods (Figure 5).

The WB and thalamus volume 
differences were normally distributed 
and the distributions zero-centred.

Freesurfer BSI ANTs+J IXIQ.Ai

p-value 0.004 5e-7 0.007 8e-6

CLES 0.67 0.81 0.67 0.78

Median (SD) 
group difference [%] 1.02 (0.16) 1.06 (0.02) 0.27 (0.01) 0.43 (0.01)

Freesurfer BSI ANTs+J IXIQ.Ai

p-value 0.005 1e-7 6e-8 2e-10

CLES 0.67 0.83 0.84 0.89

Median (SD) 
group difference [%] 1.16 (0.11) 1.12 (0.03) 0.46 (0.01) 0.73 (0.01)

Freesurfer BSI ANTs+J IXIQ.Ai

p-value 0.86 0.41 0.009 0.001

CLES 0.48 0.55 0.66 0.70

Median (SD) 
group difference [%] 0.13 (0.18) 0.05 (0.03) 0.18 (0.01) 0.30 (0.01)

CN vs MCI

CN vs AD

MCI vs AD

Figure 4: Examples of WB and thalamus segmentations from IXIQ.Ai
brain region workflow (CNN) that passed QC without manual edits.
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Region Segmentation: WB and Thalamus

Figure 5: WB volume change (negative change = loss) estimated by IXIQ.Ai (CNN + Jacobian), compared to FreeSurfer8, BSI9, and 
ANTS (https://github.com/ANTsX/ANTs/wiki) + Jacobian. p-value: Mann-Whitney U-test. CLES: Common Language Effect Size. 

WB QC pass, no edits

Thalamus QC passes, no edits


