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Selection of participants at risk of cognitive decline in clinical trials, known as trial enrichment, increases 
the probability of trial success. It is estimated that by 2050, 153 million people worldwide will be living 
with a type of dementia. Hence, innovative trial recruitment strategies are necessary to accelerate 
treatment development.
   Here we present a deep-learning framework for trial enrichment for Alzheimer's Disease (AD) that uses 
a combination of neuroimaging and clinical/demographic variables as inputs. The framework is designed 
with built-in redundancy allowing the system to work effectively with missing inputs.

We employed T1-MR and amyloid-PET images from ADNI, OASIS-3 and AMYPAD repositories (Table I). Images were 
pre-processed by validated pipelines for volumetric and amyloid PET SUVR estimation [1-4]. SUVR was estimated with 
cerebellar grey matter as reference region and the analysed PET databases comprised multiple radiotracers: 
18F-florbetapir, 18F-florbetaben and 11C-PIB. Training-set participants were labelled as stable or decline through 
hierarchical clustering, where a stable participant experienced no significant decline within a 36-month period. 
  Our framework comprises two phases: Firstly, Siamese convolutional neural network (CNN) encoders were trained 
with decline/stable targets and neuroimages as inputs. Secondly, a battery of random forest classifiers were trained 
with CNN outputs, neuroimaging derivatives, and demographics/clinical data inputs and decline/stable targets.
   Participant decline/stable prediction is achieved in a sequential approach, initially using structural MRI data and 
clinical variables. If a participant scores within an uncertainty range in the first prediction stage, a second confirmatory 
prediction is obtained by adding amyloid-PET data to a second classifier. 
   Virtual clinical trials (VCT) were implemented by simulating a 50% cognitive decline rate reduction as drug effect. For 
the VCTs, whole/enriched cohorts were bootstrapped 500 times. Methodology steps are shown in Figure 2.
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Figure 4. Activation maps from the trained Siamese 3D CNNs. A: Activation maps for the PET 

images. B: Activation maps for the structural MRIs.

Figure 5. Virtual clinical trial for the ADNI cohort. Cohorts enriched by CDRSB and 
our AI framework. Error shades show the 95% confidence interval for the mean.

Figure 1. Clinical Trial Enrichment Framework.

Figure 2. Methods. A) Data was downloaded from the ADNI, AMYPAD and OASIS repositories, this included neuroimaging and clinical/demographic variables. B) Data standardisation by pre-processing with validated IXICO neuroimaging pipelines for structural MRI and 
amyloid PET. C) Siamese neural network training to predict declining and stable participants for each of the analysed cohorts. D) Independent cross-validations, CNN encoder embeddings and relevant predictors (age, sex, cdrsb, apoe4, hippocampal volume and suvr) are 
integrated with redundant random forests. E) Virtual clinical trials (VCT) are implemented to test trial enrichment effect using bootstrapping.
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• We independently validated our framework using ADNI, 
OASIS and AMYPAD datasets.

• Across the analysed datasets, the percentage of 
participants who cognitively declined was of 15%, 30% 
in MCI participants, highlighting the importance of this 
work.

• The framework reached an 83% mean balanced 
accuracy across all independent datasets.

• Our framework proved it can potentially save 72% of 
PET imaging costs at recruitment time by using MRI-
based prediction followed by PET imaging confirmation.

• The VCT experiments showed that our framework 
selects participants who experience accelerated decline 
and who are at early disease stage.
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The AMYPAD database has the largest PET-to-MRI imaging 
availability, with participants typically in an earlier disease stage 
compared to the other cohorts. OASIS and ADNI comprised a 
more heterogenous participant recruitment (Table I).

Table I. Demographics and clinical variables
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Table II. Independent validation performance.

Figure 3. Percentage of model 
decisions by MRI data and 
subsequent confirmation by 
adding PET imaging. Results 
shown for independent 
validation.

In independent cross-validation tests, our framework reached a 
mean balanced accuracy (BAcc) of 83% [5], with a mean 
sensitivity (recall) of 73% across all studied datasets (Table II).

• Design an DL-based framework for participant recruitment in 
clinical trials.

• Select and score participants that are at early disease stage but are 
predicted to experience an accelerated cognitive decline.

• Save participant screening costs by using structural MRI and 
subsequent confirmation with amyloid PET imaging.

The saliency maps from the trained 3D CNN encoders showed high 
gradients within brain regions associated with AD. For the PET 
images these regions were the Temporal, Parietal, Precuneal and 
Lower-Frontal cortices. We also found important contributions of 
subcortical regions in PET. For the MRI images, CNN activation 
regions comprised the Temporal, Frontal cortices as well as Thalamic 
subcortices (Figure 4).

VCT results are shown for the ADNI cohort as test set using the 
mean prediction scores from models trained with OASIS and 
AMYPAD (Figure 5). Simulated recruitment was for participants 
with a CDRSB between 0 and 3.5 (i.e. CN and MCI). The whole 
recruited ADNI cohort showed a drug effect size of 0.25 
(Cohen’s D), while both enriched cohorts (by CDRSB and our 
framework) at 30% inclusion rate, showed an increased drug 
effect size of 0.36. However, the mean CDSRB at baseline is 
much higher for the CDRSB-enriched group, indicating that 
these participants are in a more advanced disease stage.

We designed an DL-based framework for clinical trial 
enrichment in AD. Our independent validations showed that our 
framework will perform well on new clinical trials aiming to 
evaluate disease modifying therapies [6].
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We also estimated BAcc for optimal 
hippocampal volume thresholds, which 
resulted in a mean BAcc of 62%, 57%, 
60% for ADNI-, OASIS-, AMYPAD trained 
thresholds, respectively. Mean BAcc for 
a majority rule classifier was of 42% (±1).

Using sequential prediction, 72% of the 
model’s decisions were made with 
structural MRI data and clinical variables 
(Figure 3).
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