On the performance of manually or automatically segmented DATSCAN-SPECT for biomarker extraction in PD

A. Palombit¹, R. Manber¹, R. Joules¹, R. Wolz^{1,2} ¹IXICO plc, London, UK; ²Imperial College of London, London, UK

JI DXICO

Introduction

- Current clinical standard for Parkinson's Disease (PD) requires the assessment of degeneration of dopaminergic neurons in brain's striatum region.
- In-vivo, this assessment can be done by imaging the dopamine transporter (DaT) activity by means of single photon emission computerized tomography (SPECT) after the injection of Iodine-123 fluoropropyl (123I-FP-CIT).
- Visual read can be complemented by quantitative binding assessment for objective striatal markers derived from the tracer biodistribution.
- We assessed the impact of the regional delineation methodology (see Figure 1) used to extract such biomarkers on their classification performances in a mixed controls/PD cohort.

Current standard (manual delineation)

Whole-brain analysis (fully automatic)

Figure 1. Approaches for striatal binding ratio (SBR) by delineation method.

Results

- The model trained with different feature set achieved performances reported in Table 1.
- Improvement in performances by using binding descriptors (LEAP-ALL) in addition to SBR-only (LEAP-SBR) consistent with [Prashanth et al., 2017] and offer balanced error types (see Figure 2).
- The simple feature set (intensity-based only) defined did not reach, if not loosely (within the standard deviation) the performances of classification based on SBR from manual delineations (PPMI-SBR).

Conclusions

This study shows results of a fully automatic quantitative analysis of DaT-SPECT based on MRI data for accurate withinsubject anatomical striatal delineations.

Imaging biomarkers from automatic SPECT processing provided classification performances close to PPMI measures on early-PD subjects.

The proposed processing, however, requires no manual intervention for a repeatable biomarker extraction suitable for large clinical studies whose comparison is shown in Table 2.

Feature set	Accuracy	Precision	
PPMI-SBR	0.96 ± 0.05	0.95 ± 0.06	
LEAP-SBR	0.82 ± 0.11	0.84 ± 0.10	
LEAP-ALL	0.88 ± 0.10	0.91 ± 0.07	

Table 1. Classifier results fromdifferent feature sets. Results arereported as average cross folds ±the standard deviation acrossfolds.

Figure 2. Confusion matrices across dataset from **PPMI-SBR** (left box), **LEAP-SBR** (central box) or **LEAP-ALL** (left box) features. Intensity scales by number of datasets.

Method	Sensitivity	Human time	Endpoint reproducibility	Resources required	Extensibility of analysis
Manual (PPMI)	High (variable)	Medium- high	Variable	Trained radiologist, manual segmentation software	Limited
Automatic (IXICO)	Medium/high	Low	High	Processing facility	High

Table 2. Head to head comparison of DaT-SPECT analysis approaches by criteria.